Syntheses and Structures of Ruthenium(I) Phosphinate Bridged Dimers

Christopher M. Barnes, D. Scott Bohle,* and Sara K. Madsen

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071-3838

Received April 29, I994

Although dimeric metal complexes with single, double, or triple metal-metal bonds have cylindrically symmetric metalmetal bonding, and therefore have no intrinsic *electronic* preference with respect to the eclipsed **(A)** and staggered **(B)**

geometries, most structurally characterized examples of this class have the eclipsed structure **A.' This** tendency is mostly due to the presence of multiple bridging ligands between the two metals, which constrains the configurational freedom with respect to the twist angle, χ , around the bond.² In the course of developing the chemistry of low-valent organotransition metal phosphinate complexes³ we have found two examples of staggered metal-metal bonds which stand in strong contrast with many carboxylato analogues $4k-k$ which have eclipsed geometries with small χ angles. Herein we report (1) the synthesis of phosphinate bridged oligomers $\left[\text{Ru}_{2}(\mu_{2}:\mu_{2}:\eta^{2}-\text{O}_{2}\right]$ PR_2 ₂(CO)₄]_n (R = Me, Ph), (2) the cleavage of these compounds with triphenylphosphine to give $\left[\text{Ru}_2(\mu_2:\eta^2-\text{O}_2\text{PR}_2)\right]$ $(CO)₄(PPh₃)₂$, and (3) the structures of two of these derivatives which contain surprisingly large *x* angles.

When triruthenium dodecacarbonyl is treated with an excess of dimethylphosphinic acid in THF at reflux a copious fine yellow-orange microcrystalline precipitate forms within $2-4$ h, eq 1. This material is formulated as a ruthenium(1) phosphinate bridged oligomerized dimer, $\left[\text{Ru}_2(\mu_2:\mu_2:\eta^2-\text{O}_2\text{PMe}_2)_2(\text{CO})_4\right]_n$, **1a**,

- **(3)** Bohle, D. **S.;** Vahrenkamp, H. **A.** *Inorg. Chem.* **1990, 29, 1097.**
- (a) Spohn, M.; Vogt, T.; Strähle, J. *Z. Naturforsch., B* **1986**, 41, 1373. (b) Bright, **T. A.;** Jones, R. **A.;** Nunn, C. M. *J. Coord. Chem.* **1988,** *18,* **361.** (c) Bianchi, M.; Matteoli, U.; Frediani, P.; Piacenti, F.; Mardelli, M.; Pelizzi, G. *Chim. Ind. (Milan)* **1981,63,475.** (d) Bulllitt, J. G.; Cotton, F. **A.** *Inorg. Chim. Acta* **1971,** *5,* **406.** (e) Bianchi, M.; Frediani, P.; Mardelli, M.; Pelizzi, G. *Acta Crystallogr., A* **1981, 37, C236. (f)** Rotem, M.; Goldberg, I.; Shmueli, U.; Shvo, **Y.** *J. Orgawmet. Chem.* **1986,314, 185.** (g) Rotem, M.; Shvo, **Y.;** Goldberg, I.; Shmueli, U. *Organometallics* **1984, 3, 1758.** (h) Rotem, M.; Goldberg, **I.; Shvo, Y.** *Inorg. Chim. Acta* **1985,97, L27.** (i) Schumann, H.; Opitz, J.; Pickardt, J. *J. Organomet. Chem.* **1977, 128, 253.** (j) Suss-Fink, G.; Wolfender, **L.-L.;** Neumann, F.; Stoeckli-Evans, H. *Angew. Chem., Int. Ed. Engl.* **1990,29,429.** (k) Sherlock, **S.** J.; Cowie, M.; Singleton, E.; Steyn, M. M. d. V. *Organometallics* **1988, 7, 1663.** (1) Hilts, R. W.; Sherlock, S. J.; Cowie, M.; Singleton, E.; Steyn, M. M. d V. *Inorg. Chem.* **1990, 29, 3161.** (m) Shiu, K.-B.; Peng, S.-M.; Cheng, M.-C. *J. Organomet. Chem.* **1993,** *452,* **143.** (n) Cabeza, J. **A.:** Femhdez-Colinas. J. M. *Coord. Chem. Rev.* **1993.126. 319.** *(0)* Rheinwald, G.; Stoekli-Evans, H.; **Suss-Fink,** G. *J. Organomet.* Chem **1992,** *441,* **295-308.**

on the basis of (1) the nature of the product from the addition of Lewis bases, (2) the similarity of the IR spectrum for **la** as contrasted with the well-known carboxylato bridged oligomer $[Ru_2-(\mu_2:\mu_2:\eta^2-O_2CCH_3)_2(CO)_4]_n$, Figure 1, and (3) elemental analysis. As with $\text{[Ru}_{2}(\mu_{2}:\mu_{2}:\eta^{2}-\text{O}_{2}\text{CCH}_{3})_{2}(\text{CO})_{4}]_{n}$ the μ_{2} oxygen that bridges the oligomerized dimers in **la** is readily cleaved with good donor ligands such as triphenylphosphine or dimethyl sulfoxide, eq 2, to give 2a,b in very good yields.⁵

The carbonyl stretching region of the infrared spectra of **la** and $\left[\text{Ru}_{2}(\mu_{2};\mu_{2};\eta^{2}-\text{O}_{2}CCH_{3})_{2}(\text{CO})_{4}\right]_{n}$, shown in Figure 1, both contain similar manifolds above and below 2000 cm^{-1} , with the bands for **la** being slightly shifted to lower energies for the phosphinate oligomer in **la.** This similarity suggests that both species contain a bridged (OC)₂Ru-Ru(CO)₂ core. Strähle et al. have reported single crystal structures of the dimeric species $Ru_2(\mu_2)$: η^2 -O₂CPh)₂(CO)₆ and its oligomerized decarbonylation product $[Ru_2(\mu_2:\mu_2:\eta^2-O_2CPh)_2(CO)_4]_n$.^{4a} This pair of well-characterized complexes illustrate a general trend in the vibrational modes for the carboxylate group, namely that both the symmetric and asymmetric carboxylate stretching bands are lower for the μ_2 : μ_2 : η^2 -O₂CPh coordination mode in the oligomer than for the $\mu_2:\eta^2$ -O₂CPh geometry in the dimer.⁶ In keeping with the proposed $\mu_2:\mu_2:\eta^2$ -O₂PR₂ structure in eq 1, the phosphorusoxygen stretching bands for oligomer **la** are also at lower energies than those for the dimeric triphenylphosphine adduct **2a.** The changes in the phosphinate stretching bands are significantly larger than for the carboxylate analogues, a trend

⁽¹⁾ Cotton, F. **A.;** Walton, R. **A.** *Multiple Bonds Between Metal Atoms,* 1st ed.; Oxford University Press: Oxford, U.K., **1982.**

⁽²⁾ The angle *x* is defined **as** the average of the four unique **dihedral** angles that define the twist around the metal-metal bond.

⁽⁵⁾ Crooks, G. R.; Johnson, B. F. G.; Lewis, J.; Williams, I. G.; Gamlen, G. *J. Chem.* **SOC.** *A* **1969, 2761.**

Figure 1. Carbonyl stretching regions in the IR (KBr): (a) $\text{[Ru}_2(\mu_2:$ $\mu_2:\eta^2$ -O₂PMe₂)₂(CO)₄]_n, **1a**, with peaks at 2023, 1973, and 1948 cm⁻¹; (b) $\text{[Ru}_2(\mu_2:\mu_2:\eta^2-O_2\text{CMe})_2(\text{CO})_4]_n$, with peaks at 2052, 1993, 1963, and 1949 cm⁻¹.

Figure 2. ORTEP plot of 2a showing all non-hydrogen atoms.

due to the lower energy of these modes and greater mixing with metal-oxygen and other modes.

The microcrystalline precipitate of **la** has a well-defined powder diffraction pattern out to 70 \degree in 2 θ with Cu K α radiation and has been indexed as a monoclinic unit cell with *a* = 18.0977(4) **A,** *^b*= 9.0756(3) **A,** *c* = 10.0355(3) **A,** *p* = 112.0441(2)°, and $V = 1527.81(3)$ Å³. Moreover, the experimental density, $\rho = 2.07 \pm 0.01$ g mL⁻¹, is consistent with four $Ru_2(O_2PMe_2)_2(CO)_4$ units per cell.

The dimeric ruthenium(1) species **2a,b** have been structurally characterized by single crystal X-ray diffraction; important metric parameters are collected in Table 1, and atomic coordinates are presented in Tables **2** and 3. The ORTEP views shown in Figures **2** and 3 illustrate the staggered geometry **(B)** found for both **2a** and **2b**, $\chi = 26.1^{\circ}$ and $\chi = 22.0^{\circ}$, respectively, for the Ru-Ru bond. The structure of the diphenylphosphinate derivative **2b** was determined fist and the twist was initially attributed to the steric interactions between the phenyl groups. Surprisingly, the structure of the dimethyl derivative **2a** proved to have **an** even larger twist. Clearly, steric effects of the phosphinate substituents alone do not determine *x.*

The structurally characterized diruthenium(1) dicarboxylate dimers are a diverse set of compounds with a range of axial ligands, e.g. carbonyl,⁴¹ tertiary phosphine,^{4i,m} and aquo,^{4h} and bridging carboxylato groups, e.g. acetate,^{4a,b,1} 4-fluorobenzoate,^{4f,h} tartrate, $4j$ and trifluoroacetate, $4m$ that vary enormously in their

Table 1. Selected Interatomic Distances and Angles for $Ru_2(\mu_2:\eta^2-O_2PR_2)_2(CO)_4(PPh_3)_2$

$\mathcal{L}_{\mathcal{L}}(w_2, \eta_1, \mathcal{L}_2) = \mathcal{L}_{\mathcal{L}}(w_1, \mathcal{L}_1)$			
Interatomic Distances (Å) ^a			
	$2a$ (R = Me)	$2b(R = Ph)$	
$Ru(1) - Ru(2)$	2.781(1)	2.815(1)	
$Ru(2) = O(12)$	2.126(5)		
$Ru(1) - O(11)$	2.140(5)	2.147(4)	
$Ru(2)-O(22)$	2.117(8)		
$Ru(1) - O(21)$	2.128(8)	2.129(5)	
$Ru(2) - C(3)$	1.847(12)		
$Ru(1)-C(1)$	1.846(12)	1.832(7)	
$Ru(2)-C(4)$	1.846(8)		
$Ru(1)-C(2)$	1.824(8)	1.843(7)	
$Ru(2)-P(4)$	2.443(2)		
$Ru(1) - P(3)$	2.461(2)	2.444(2)	
Nonbonded Interatomic Distances (A)			
	$2a(R = Me)$	$2b(R = Ph)$	
$O(11) \cdot O(12)$	2.551	2.580	
$O(21) \cdot O(22)$	2.571		
Bond Angles (deg)			
	$2a (R = Me)$	$2b(R = Ph)$	
$P(3) - Ru(1) - Ru(2)$	175.8(1)	166.5(1)	
$Ru(1) - Ru(2) - P(4)$	171.4(1)		
$O(11) - Ru(1) - O(21)$	86.9(2)	83.4(2)	
$O(12) - Ru(2) - O(22)$	83.8(2)		
$C(1) - Ru(1) - C(2)$	90.1(4)	88.1(3)	
$C(3)-Ru(2)-C(4)$	87.5(5)		
$O(11) - P(1) - O(12)$	114.4(3)	117.3(3)	
$O(21) - P(2) - O(22)$	115.9(4)		
Dihedral Angles ^b (deg)			
	$2a(R = Me)$	$2b(R = Ph)$	

*Compound **2b** crystallizes in the space group *C2lc* and has a crystallographically imposed 2-fold rotation **axis** orthogonal to the metal-metal bond. **As** a consequence, only a single metrical parameter is given for **2b,** while for *2a,* which crystallizes in the triclinic space group $P1$, both parameters are given. b Absolute values of the dihedral angles.

Figure 3. ORTEP plot of **2b** along the Ru-Ru axis with the triphenylphosphine ligands omitted.

steric and electronic effects. Together they form the most extensively studied subset of the sawhorse class of ruthenium- **(I)** anion bridged dimers which also include numerous **N** atom donors⁴ⁿ and a sulfinato complex.⁴⁰ Some of these compounds have χ values near zero,^{4a-c} but several have larger twists ranging from 6 to 18° ,^{4c,f-i} Despite this significant structural variation, we find no direct correlation between the character

⁽⁶⁾ Both the carboxylate and phosphinate complexes have Δ values (=v_{asym} - ν_{sym}) which are consistent with the chelate binding of these ligands. The net lowering of these bands upon formation of the second **M-0** bond to one of the oxygens has been discussed in: Deacon, G. B.; Phillips, R. J. *Coord. Chem. Rev.* **1980,** 33, 227. **Suss-Fink,** G.; Hemann, G.; Morys, P.; Ellermann, J.; Veit, **A.** *J. Organometal. Chem.* **1985,** *284,* 263.

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic

"Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized U_{ij} tensor.

of the ligands, either terminal or bridging, and the degree of dihedral twist they display. Hilts *et al.* have reported the structure of a related compound, $Ru_2(\mu_2:\eta^2-S_2PMe_2)_2(CO)_4$ -(PPh₃)₂, which possesses a χ angle of 39.1° and sulfur-sulfur distances of 3.444 and 3.445 Å.⁷ These values are all unusually large and suggest that these distances are related to the dihedral twist. Although the sulfur-sulfur bites are larger than the ruthenium-ruthenium bond length, all of the structurally characterized dicarboxylate and diphosphinate bridged diruthe-

*Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized U_{ij} tensor.

nium(1) dimers have ruthenium-ruthenium bonds longer than their oxygen-oxygen bite distances. Thus, it does not appear that dihedral twist is imposed to improve the fit between the bridging ligands and the ruthenium-ruthenium core.

Electrophiles such as iodine, protic acids, and nitrosonium salts readily oxidatively add to the ruthenium(1) centers in **2a,b** to give a mixture of mononuclear products, as ascertained by 31P NMR spectroscopy. When the reaction between **2b** and excess trifluoroacetic acid is monitored by NMR, the resulting spectrum is consistent with $\left[\text{Ru}_2(\mu_2-H)(\mu_2:\eta^2-O_2CCF_3)(\mu_2:\eta^2-P_2)\right]$ 02PR2)(C0)4(PPh3)2]+, **3a,b,** a cationic hydrido-bridged dimer with a single phosphinate bridge.⁸ Unfortunately this product decomposes during workup even under *dry* oxygen-free conditions. This complex is less stable than the related osmium complexes $[Os_2(\mu_2-H)(\mu_2:\eta^2-O_2CCH_3)_2(CO)_4(L)_2]^+$, L = py or PR₃, one of which has been structurally characterized $(L =$ PMezPh), and are stable in the presence of excess trifluoroacetic

⁽⁷⁾ Hilts, R. W.; Cowie, M. *Inorg. Chem.* **1990,** *29,* 3349.

⁽⁸⁾ **Important NMR** data for $3a$, b (CDCl₃) are as follows. $3a$ ¹H δ : -11.31 (dt, $^{2}J\{H-PPh_3\} = 43.1, {}^{3}J\{H-Q_2PMe_2\} = 7.3, 1, Ru-H-Ru)$. 3b Ru-H-Ru). ³¹P{¹H} *b*: 55.18 (t, ²J_{P-P} = 23.2, O₂PMe₂), 33.26 (d, ${}^{1}_{1}H$ 6: -11.26 (dt, ${}^{2}J\{H-PPh_3\} = 43.3$, ${}^{3}J\{H-O_2PPh_2\} = 8.8$, 1, PPh_3).

acid.9 The relative lability of the phosphinate ligands in **2a,b** is further illustrated by the contrast with the reactivity of the dimethyldithiophosphinate complex $Ru_2(\mu_2;\eta^2-S_2PMe_2)_{2}(CO)_4$ -(PPh3)z which can be reversibly protonated without either decomposition or loss of the bridging ligands.⁷ Thus the relative lability of the phosphinate bridges in **2a,b** suggest that they may be useful synthons for the $[Ru_2(CO)_4L_2]$ fragment.

Experimental Section

Materials. The triruthenium dodecacarbonyl, diphenylphosphinic acid, and triphenylphosphine were obtained commercially (Aldrich) and used without further purification. Dimethylphosphinic acid was prepared from tetramethyldiphosphine disulfide.¹⁰ Complex 2b was prepared by literature methods.³ Where noted, solvents were dried and degassed by standard techniques, but were generally used without further purification. All IR spectra were recorded on a MIDAC FTIR as either a potassium bromide pellet or as a dichloromethane solution between sodium chloride plates. The diffuse reflectance spectrum of **la** was acquired on a Perkin-Elmer Lambda-9 spectrometer fitted with a 60 cm integrating sphere and measured against an analytical grade barium sulfate standard. Elemental microanalysis for carbon and hydrogen was performed by Desert Analytics.

Preparation of New Compounds. $\begin{bmatrix} Ru_2(\mu_2:\mu_2:\eta^2-O_2PMe_2)\end{bmatrix}$ $(CO)_4$ _n, 1a, and $Ru_2(\mu_2:\eta^2-O_2PMe_2)_2(CO)_4(PPh_3)_2$, 2a. $Ru_3(CO)_{12}$ (164 mg) was treated with $Me₂PO₂H$ (330 mg) and 25 mL of THF. The mixture was heated at reflux for *5* h. At this point, **la** could be isolated in 93% yield by cooling and filtering the mixture. Anal. Calcd for $C_8H_{12}O_8P_2Ru_2^{-1}/4THF$: C, 20.86; H, 2.72. Found: C, 20.56; H, 2.72. Solvate was confirmed by ¹H NMR. IR, cm⁻¹(KBr): $v(C-0)$ 2023, 1973, 1948; $v(P-O)_{sym}$ 1108; $v(P-O)_{asym}$ 1019. UV-vis (KBr): *Amu* 512 nm.

Preparation of 2a. Instead of isolating **la,** we added triphenylphosphine (225 mg) to the above mixture and heated the resultant mixture at reflux for an additional 2 h. After removal of solvent in vacuo, IR spectra of the solid indicated that it was a mixture of $2a$ and $Ru_3(CO)_{9}$ - $(PPh₃)₃$. The product was recrystallized twice from $CH₂Cl₂/cyclohex$ ane, rejecting the deep maroon crystals of $Ru_3(CO)_9(PPh_3)$ ₃ that first formed. Yield: 156 mg of **2a** (39.6%) as yellow microcrystals. Anal. Calcd for $C_{44}H_{42}O_8P_4Ru_2$: C, 51.57; H, 4.13. Found: C, 51.48; H, 4.01. NMR (CDCI₃): ¹H δ 7.68-7.31 (m, 30, PC $_{6}H_{5}$), 1.04 (d, ²J_{P-H} $3J_{P-P} = 24.4$, PPh₃), 69.4 (t, O₂PMe₂). IR, cm⁻¹(KBr): ν (C-O) 2018.0 m, 1976.0 w, 1936.0 m, 1908.5 w; $v(P-Q)_{sym}$ 1240 s; $v(P-Q)_{asym}$ 1131 **s.** Single crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of diethyl ether. $= 6.8, 6, PCH₃$), 0.93 (d, ${}^{2}J_{P-H} = 7.3, 6, PCH₃$); ³¹P{¹H} δ 12.78 (t,

X-ray Crystallography. Single Crystal. General experimental details for X-ray data collection have been described before.¹¹ The structures were solved by direct methods **(2a)** or Patterson techniques **(2b) and** refined by full-matrix least-squares techniques. Important single crystal X-ray diffraction parameters are collected in Table 4.

 $Ru_{2}(\mu_{2};\eta^{2}-O_{2}PMe_{2})_{2}(CO)_{4}(PPh_{3})_{2}$, 2a. Data were collected at 23 ^oC on a crystal of dimensions $0.24 \times 0.15 \times 0.07$ mm. The compound crystallized in the noncentrosymmetric triclinic space group P1, with one molecule in a cell of dimensions $a = 8.975(2)$ Å, $b = 9.365(2)$ Å, $c = 14.929(3)$ Å, $\alpha = 76.09(3)$ °, $\beta = 78.71(3)$ °, $\gamma = 64.95(3)$ °, and V $= 1097.1(4)$ Å³. A total of 4145 independent reflections were gathered, the octants collected being $+h,\pm k,\pm l$ using the Wyckoff scan method. The structure has been refined to conventional *R* factor values of $R =$ 0.0281 and $R_w = 0.0306$ on the basis of 3517 observed reflections with $I > 6\sigma(I)$ in the 2 θ range 4-50°, giving a data to parameter ratio of 6.8:l. All non-hydrogen atoms were refined anisotropically; the $P-CH_3$ hydrogen atoms, located in the Fourier map, were refined

Table 4. Crystallographic Data for $Ru_2(\mu_2:\eta^2-O_2PR_2)_2(CO)_4(PPh_3)_2$

	2a	2 _b
formula	$C_{44}H_{42}O_8P_4Ru_2$	$C_{72}H_{66}O_{10}P_4Ru_2$
$a(\text{\AA})$	8.975(2)	22.885(4)
b(A)	9.365(2)	14.112(5)
c(A)	14.929(3)	20.265(4)
α (deg)	76.09(3)	
β (deg)	78.71(3)	100.59(1)
γ (deg)	64.95(3)	
$V(\AA^3)$	1097(4)	6433(3)
z		4
fw	1024.8	1417.3
space group	P1	C2/c
T (°C)	23	-100
λ (Å)	0.710 73	0.71073
$\rho_{\rm calc}$ (g cm ⁻³)	1.551	1.463
$\mu(Mo\ Ka_1)(mm^{-1})$	0.885	0.615
R^a	0.028	0.044
R_{w}^{a}	0.031	0.054

 $R = \sum |F_{\rm o}| - |F_{\rm c}| / \sum |F_{\rm o}|$; $R_{\rm w} = \sum |W| |F_{\rm o}| - |F_{\rm c}|^2 / \sum |W| |F_{\rm o}|^2 |^{1/2}$.

isotropically, while the $P - C_6H_5$ hydrogen atoms were placed at idealized positions. The maximum and minimum residual densities remaining were 0.56 and -0.41 e \AA^{-3} , respectively. Selected metrical data and atomic positions are presented in Tables 1 and 2.

 $[Ru_2(\mu_2:\eta^2-O_2PPh_2)(CO)_4(PPh_3)_2]$ ²C₄H₈O, 2b. Data were collected at -100 °C on a crystal of dimensions $0.22 \times 0.20 \times 0.58$ mm³. The compound crystallized in the centrosymmetric monoclinic space group C2/c with four molecules in a cell of dimensions $a = 22.885(4)$ \hat{A} , $b = 14.112(5)$ \hat{A} , $c = 20.265(4)$ \hat{A} , $\beta = 100.59(1)$ °, and $V = 6433$ -(3) \AA ³. A total of 5678 independent reflections were gathered, the octants collected being $-h, +k, \pm 1$ using the $2\theta - \theta$ scan method. The structure has been refined to conventional *R* factor values of $R = 0.0445$ and $R_w = 0.0541$ on the basis of 3592 observed reflections with $I >$ $6\sigma(I)$ in the 2 θ range 4-50°, giving a data to parameter ratio of 9.0:1. The compound crystallized with one THF solvate per Ru asymmetric unit. All non-hydrogen atoms were refined anisotropically, while the hydrogen atoms located in the Fourier map were refined isotropically. The hydrogen atoms of the solvate were placed in fixed calculated positions (C-H = 0.96 Å). The maximum and minimum residual densities remaining were 0.56 and -1.24 e \AA^{-3} , respectively. Selected metrical data and atomic positions are presented in Tables 1 and 3.

Powder: Crystal Data for la. The X-ray powder pattem of $[Ru₂(O₂PMe₂)₂(CO)₄]$ _n was recorded on a Scintag powder diffractometer at 25 °C with Cu K α_1 radiation ($\lambda = 1.540598$ Å) and microcrystalline quartz used **as** an external standard. The powder pattem was indexed using the program TREOR92,¹² to give a monoclinic cell with $a =$ 18.097 Å, $b = 9.076$ Å, $c = 10.034$ Å, $\beta = 112.0^{\circ}$, and $V = 1527$ Å³. From the indexed powder pattem the unit cell parameters were refined by a least-squares procedure. The values obtained in the refinements were $a = 18.0977(4)$ Å, $b = 9.0756(3)$ Å, $c = 10.0355(3)$ Å, $\beta =$ 112.0441(2)^o, and $V = 1527.81(3)$ \AA ³ using 52 lines of the pattern. The density of the crystallites was determined to be $\rho = 2.07 \pm 0.01$ g mL⁻¹ by flotation in carbon tetrachloride and dibromoethane, thus establishing that there are four $Ru_2(O_2PMe_2)_2(CO)_4$ units per cell $(Z =$ 4).

Acknowledgment. We gratefully acknowledge financial **support** from the donors of the Petroleum Research Fund (Grant **25141-63),** administered by the American Chemical Society, and the Research Corp. for a Cottrell Scholar award to D.S.B.

Supplementary Material Available: For **2a,b,** tables giving summaries of the X-ray crystallographic experimental details, hydrogen positional and isotropic thermal parameters, anisotropic thermal parameters, and bond distances and angles (14 pages). Ordering information is given on any current masthead page.

⁽⁹⁾ Deeming, **A.** J.; Randle, N. P.; Bates, P. **A,;** Hursthouse, M. B. *J. Chem. SOC., Dalton Trans.* **1988, 2753.**

⁽¹⁰⁾ Reinhardt, H.; Bianchi, D.; MBlle, D. *Chem. Ber.* **1957,** *90,* **1656.**

⁽¹¹⁾ Bohle, **D. S.;** Canon, K. T.; Christensen, **A.** N.; Goodson, P. **A,;** Powell, **A.** K. *Organometallics* **1994,** *13,* **1355.**

⁽¹²⁾ Werner, **P.-E.** *Z. Kristallogr.* **1964,** *120,* **375.**